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Abstract 

 
In pursuit of carbon neutrality, the Electrical and Mechanical Services Department (EMSD) of the Government of the Hong Kong 

Special Administrative Region implemented Multi-trade Integrated Mechanical, Electrical and Plumbing (MiMEP) for the first time 

during the Tai Lung Veterinary Laboratory's chiller plant replacement. To further optimize the chiller plant efficiency and reduce 

energy consumption, chiller optimization with partially observable reinforcement learning (RL) algorithm was proposed, where three 

machine learning models have been developed to forecast cooling demand, predict cooling load, and predict energy consumption. 

By leveraging zero-inflated regression technique, these models establish an environment configuration for the RL algorithm. When 

compared with the default setting, the optimization approach can enhance the overall chiller plant efficiency by approximately 20% 

based on simulation. These findings highlight the potential of combining MiMEP with artificial intelligence for sustainable energy 

management, emphasizing the importance of technological integration in achieving carbon reduction objectives. 
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1 INTRODUCTION 

 

Central air-conditioning system, particularly the chiller plant, is 

recognized as the largest energy consumer in modern buildings. 

In Hong Kong, air conditioning has been reported to account for 

30% of total electricity consumption [1]. This energy demand is 

even more pronounced in office buildings, where air 

conditioning can comprise over 45% of the total energy usage 

[1], and this percentage is projected to continue rising. The 

escalating energy consumption can have a significant impact on 

the environment, resulting in increased pollution levels [2], and 

exacerbation of climate change [3]. Therefore, an effective 

energy management for chiller plants is vital for minimizing 

energy usage, reducing operational costs and mitigating 

environmental footprint.  

 

In line with the goal of carbon neutrality, the Electrical and 

Mechanical Services Department (EMSD) of Hong Kong has 

successfully completed a pilot project that adopted Multi-trade 

Integrated Mechanical, Electrical and Plumbing (MiMEP) [4] 

in the replacement of chiller plant at Tai Lung Veterinary 

Laboratory (Figure 1).  

 
Figure 1. MiMEP modules of the chiller plant  

at Tai Lung Veterinary Laboratory 

 

The uninterrupted operation of the chiller plant is essential for 

the laboratory's critical role in conducting diverse veterinary 

experiments. The objectives of the replacement were to enhance 

the chiller plant efficiency and minimize carbon emission by 

implementing MiMEP technology during the replacement 

process. The adoption of MiMEP has demonstrated significant 

successes in accomplishing carbon neutrality targets, and the 

potential for wider use of MiMEP in Repair, Maintenance, 



Alteration, and Addition (RMAA) projects. These 

enhancements consist of a 70% reduction in material wastage, 

as well as reductions of over 50% in construction time and 

manpower, achieved by off-site prefabrication (Figure 2). These 

changes contribute to improved environmental sustainability 
and are in line with the objective of achieving carbon neutrality. 

 
 

 
 

Figure 2. Off-site prefabrication of chilled water pump set 

 

In order to further enhance the efficiency of the chiller plant, the 

use of Artificial Intelligence (AI) models was proposed to 

optimize its control logic. The building management system 

(BMS) plays a crucial role in monitoring and regulating the 

control of the heating, ventilation and air conditioning (HVAC) 

systems. While the BMS has made notable contributions in 

coordinating the chiller plant operation, the existing control 

strategy of the system relies on rule-based approaches which 

could lead to ineffective operation and potential energy wastage. 

Although BMS control settings can be adjusted manually during 

the daily operation, this approach is deemed impractical and 

ineffectual when it applies to optimizing the chiller plant in the 

long term. Extensive manpower effort is necessary to modify 

the control parameters for optimal performance under various 

loads and weather conditions. Therefore, the development of a 

dynamic optimization strategy for achieving automatic 

optimization of chiller plant operations under various 

circumstances is essential. 

 

In pursuit of dynamic optimization, the potential 

implementation of AI technology was being explored. In recent 

years, various AI applications have been developed to optimize 

the operation of chillers. Instead of depending on mathematical 

models derived from physical laws, the optimization approach 

is built with data-driven models that are generated through 

historical operational data obtained from the chiller plant. There 

are numerous data-driven optimization approaches available for 

chiller optimization, including but not limited to particle swarm 

optimization (PSO) [5], genetic algorithms [6], machine 

learning algorithms [7], neural networks [6], and reinforcement 

learning algorithms [8]. However, these existing optimization 

approaches often encounter issues like low convergence rate, 

incapability to handle high-order optimization, or optimization 

of expensive black-box functions. In contrast, the combination 

of reinforcement learning with Bayesian optimization for chiller 

plant optimization remains largely unexplored. In this paper, a 

partially observable reinforcement learning (RL) algorithm 

integrated with Bayesian optimization [9] was proposed to 

achieve dynamic optimization of the chiller plant. This 

approach can effectively tackle high-order optimization 

challenges and manage costly black-box functions. The 

algorithm incorporates three machine learning algorithms to 

construct an environment configuration for cooling load 

prediction, cooling demand forecast, and energy consumption 

prediction. Considering the limited dataset size and the 

prevalence of missing data and zero counts in our dataset, the 

zero-inflated regression technique, combining a categorical 

boosting (CatBoost) regressor and an extremely randomized 

trees (Extra-Trees) classifier was employed to train the three 

models. The resultant cooling load prediction model and energy 

consumption prediction model establish a simulation 

environment for RL agents to explore, enabling them to learn 

and adapt dynamic control policies that aim at minimizing the 

chiller plant’s energy consumption while fulfilling the cooling 

load requirements.  

 

The optimization algorithm’s performance was evaluated using 

data from 2023, where statistical analysis was employed to 

evaluate the improvement of the chiller plant in terms of the 

coefficient of performance (COP) and energy consumption. 

 

2 PROBLEM STATEMENT 

 

The chiller system to be optimized comprises three chillers and 

four chilled water pumps. The calculation of the cooling load 

supplied by the chiller plant was based on the following formula, 

taking into account the water volume flow rate, supply water 

temperature, and return water temperature. 
 

 
𝑄 = ∑ 𝑉𝑖

3

𝑖=1

∗ 𝑝 ∗ 𝐶𝑝 ∗ ΔT𝑖 (1) 

where  

Q : Cooling load (kW) 

V : Volume flow rate (m3/s) 

p : Water density (1000 kg/m3) 

Cp : Water specific heat capacity (4.19 kJ/(kg*K)) 

ΔT : Temperature difference between chilled water  

  supply and return 



The energy consumption of the chiller plant was determined by 

summation of the active power of each chiller and chilled water 

pump, as indicated in the following formula. 

 

 
𝐸 = ∑ 𝐸𝑐ℎ𝑖𝑙𝑙𝑒𝑟𝑖

3

𝑖=1

+ ∑ 𝐸𝑝𝑢𝑚𝑝𝑗

4

𝑗=1

 (2) 

 

where 

E : Total energy consumption of chiller plant (kW) 

Echiller : Energy consumption of chiller (kW) 

Epump : Energy consumption of chilled water pump (kW) 

 

The objective of the optimization process is to minimize the 

overall energy consumption of the chiller plant, while ensuring 

the cooling load requirement of the Laboratory is met, as 

represented in the following objective function:  

 

 min   |𝐶𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 − 𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡|, 𝐸 (3) 

subject to 

𝐶𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 ∗ (1 − 𝐶𝑡) < 𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡 < 𝐶𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 ∗ (1 + 𝐶𝑡) (4) 

𝐸 > 0 (5) 

where  

Ct : Tolerance for cooling load 

Cforecast : Forecast cooling load  

Cpredict : Predicted cooling load  

E : Energy Consumption 

 

3 METHODOLOGY 
 

3.1 Dataset 

 

The chiller plant operating data used for the model development 

were collected from the BMS between August 2022 and 

February 2024, at 15-minute intervals. The data was 

subsequently divided into training, validation, and testing sets 

in a ratio of 7:2:1 for the purpose of model development. 

Throughout the data collection process, occasional issues such 

as data corruption, incompleteness, missing values, and out-of-

range readings, were encountered. Using the irrelevant or 

incorrect data when developing AI models may compromise the 

model's effectiveness and result in false optimization outcomes. 

Therefore, multiple data pre-processing procedures were 

implemented to tackle these problems and filter out unreliable 

data. For instance, zero or negative values of the chilled water 

flow rate and COP were excluded due to the routine 

maintenance. In addition, data pre-processing involved the 

assignment of zero values to data points that corresponded to 

periods when the chiller or chilled water pump was not running, 

the rectification of data through gain adjustments, the removal 

of outliers, the calculation of cooling load and energy 

consumption, and the conversion of data types. These steps 

collectively contributed to the development of models for 

analysis.  

3.2 Chiller Plant Optimization Algorithm 

 

The proposed chiller plant optimization approach employed a 

partially observable RL algorithm, coupled with multi-objective 

Bayesian optimization, to dynamically optimize water-side 

chiller plant operation. This methodology leveraged the 

capabilities of adapting to changing preferences or priorities in 

multi-objective optimization problems, allowing it to find trade-

off solutions between different objectives. Furthermore, it 

benefited from the efficient search space exploration and 

exploitation offered by Bayesian optimization. Through 

iteratively learning and optimization, the RL agent continuously 

refined its control strategies by interacting with a simulated 

environment. This enabled effective response to diverse cooling 

demands and environmental factors, ultimately resulting in 

significant energy savings, cost reduction, and improved 

sustainability.  

 

Three machine learning regression models were developed: a 

cooling load prediction model, an energy consumption 

prediction model, and a cooling demand prediction model. 

These models collectively established an environment 

configuration for the RL process. During the RL process, the 

cooling load prediction model and energy consumption 

prediction model were utilized to create the simulation 

environment for RL agent to interact with. Figure 3 shows an 

overview of the design. 

 
 

 

Figure 3. Overview design of the partially observable 

RL algorithm for chiller plant optimization 

 

The RL process consisted of several steps. First, the cooling 

demand prediction model forecasted the required cooling load 

for the chiller plant. Then, the RL agent was employed to 

initialize and adjust parameters through predefined iterations, 

treating them as “actions” that were inputted into machine 

learning models for cooling load prediction and energy 

consumption prediction. The predicted cooling load and energy 

consumption served as “observations”, while the “rewards” 



were determined by calculating the negative absolute difference 

between the forecasted and predicted cooling load, as well as 

the negative predicted energy consumption. These rewards 

guided the agent in re-initializing the parameters. 

 

The re-initialization process utilized Bayesian optimization to 

iteratively update the parameters based on the rewards obtained. 

Following each iteration, the agent aimed at maximizing the 

reward by adjusting the chiller plant’s operating parameters 

based on the observed rewards. Penalties were imposed in cases 

where the predicted energy consumption dropped below zero or 

if the predicted cooling load deviated from the range defined by 

the forecasted cooling load and the tolerance value specified in 

the objective function. Through successive iterations, the 

parameters that achieved the lowest energy consumption while 

meeting the cooling load target were identified. These optimal 

parameters were then derived into control settings to optimize 

the operation of the chiller plant.  

 

3.3 Machine Learning Regression Models 

 

To facilitate the optimization process and address the challenges 

posed by limited dataset size, as well as the prevalence of 

missing data and zero counts when chiller is not in operation, 

the zero-inflated regression technique, as illustrated in Figure 4, 

was employed to construct the three machine learning 

regression models. This technique combined a classifier and a 

regressor to differentiate between periods when the chillers and 

chilled water pumps were active or inactive. The classifiers 

were employed to identify the on/off status of each chiller and 

chilled water pump, providing valuable information for the 

regression model to accurately predict the cooling load, as well 

as the energy consumption. 

 

 
 

Figure 4. Schematic diagram illustrating the mechanism of 

zero-inflated regression model 

 

The classifier was formulated using Extra-Trees [10], a variant 

of the random forest algorithm known for its ability to reduce 

data bias and training time. For the regressor, CatBoost was 

adopted, followed by the Extra-Trees classifiers. The CatBoost 

regressor was well suited for handling categorical features, 

preventing model overfitting, and achieving superior 

performance through a combination of random permutations 

and ordered boosting [11]. They were designed to predict 

precise cooling load and energy consumption values. The 

combination of Extra-Trees classifier and CatBoost regressor 

enabled the capturing of intrinsic relationship between the 

operational states of the chillers and chilled water pumps, and 

their corresponding cooling load and energy consumption. 

 

Table 1. Input attributes used for cooling load prediction 

and energy consumption prediction models 
Attributes Type Description 

MCHWSWT Float Main Chilled Water Supply Water 

Temperature 

MCHWSFWR Float Main Chilled Water Supply Flow Rate 

CHR-PLANT-

SWTSP 

Float Chiller - Plant Room - Supply Water 

Temperature Setpoint 

VSD-DPRESP Float Variable Speed Drive - Differential Pressure 

Setpoint 

CHRi-S Bool On/Off Status of Chiller i   

CHRi-PAMP1 Float Current for Each Phase 1 of Chiller i  

CHRi-PAMP2 Float Current for Each Phase 2 of Chiller i  

CHRi-PAMP3 Float Current for Each Phase 3 of Chiller i  

CHRi-DAT Float Discharge Air Temperature (Condenser) of 

Chiller i  

CHRi-SUAT Float Suction Air Temperature (Condenser) of 

Chiller i  

CHRi -

CHWSWT 

Float Chilled Water Supply Water Temperature of 

Chiller i  

CHRi- 

CHWFWR 

Float Chilled Water Flow Rate of Chiller i  

CHRi -

RUNTIME 

Float Running Time of Chiller i  

CHWPi-S Bool On/Off status for Each of Chilled Water 

Pump i 

CHWPi-PAMP1 Float Current for Each Phase 1 of Chilled Water 

Pump i 

CHWPi-PAMP2 Float Current for Each Phase 2 of Chilled Water 

Pump i 

CHWPi-PAMP3 Float Current for Each Phase 3 of Chilled Water 

Pump i 

CHWPi -

VSDSPD 

Float VSD Speed of Chilled Water Pump i 

CHWPi -

VSDSPDC 

Float VSD Speed Setpoint of Chilled Water Pump 

i 

CHWPi -

WDPRE 

Float Water Discharge Pressure of Chilled Water 

Pump i  
CHWPi -

WSUPRE 

Float Water Suction Pressure of chilled water 

pump i 

PLANT-RMRH Float Plant Room - Room Relative Humidity 

PLANT-RMT Float Plant Room - Room Temperature 

T_outdoor Float Outdoor Air Temperature 

H_outdoor Float Outdoor Air Humidity 

 

A Pearson correlation analysis was conducted to investigate the 

relationship between the sensor data from the chiller plant and 

the cooling load as well as energy consumption. The analysis 

pinpointed essential variables with a correlation coefficient 

exceeding 0.1, which were chosen for the input attributes of the 



cooling load prediction model and the energy consumption 

prediction model. These selected attributes are listed in Table 1.  

 

Rather than predicting the current cooling load and energy 

consumption, the cooling demand prediction model was 

specifically designed to forecast the cooling load of the chiller 

plant at a 30-minute ahead interval. To achieve accurate 

prediction of the cooling demand, additional input attributes 

were incorporated into the model. These attributes, as outlined 

in Table 2, encompassed features associated with the chiller’s 

return water, as well as forecasted outdoor temperature and 

humidity. They are used to ensure the model would consider 

pertinent factors for precise forecast of cooling demand. 

 

The performance of these three machine learning models was 

assessed using Mean Absolute Error (MAE) and Root Mean 

Squared Error (RMSE) as performance metrics. The use of 

zero-inflated regression technique in combination with the 

CatBoost regressor and the Extra-Trees classifier yielded the 

lowest MAE and RMSE score compared to other tree-based 

algorithms (Table 3). A lower MAE and RMSE score indicate 

higher model accuracy, demonstrating the algorithm’s 

capability in simulating the chiller plant environment.  

 
Table 2. Additional input attributes used for  

cooling demand prediction model 
Attributes Type Description  

MCHWRWT Float Main Chilled Water Return Water 

Temperature 

MCHWRFWR Float Main Chilled Water Return Flow Rate 

CHRi -

CHWRWT 

Float Chilled Water Return Water Temperature of 

Chiller i  

T_outdoor- 

forecast 

Float Forecast Outdoor Air Temperature 

H_outdoor- 

forecast 

Float Forecast Outdoor Air Humidity 

 

Table 3. Performance comparison of cooling load  

prediction model | energy consumption prediction model | 

cooling demand prediction model 
Model  MAE RMSE 

Random Forest 7.40 | 2.19 | 11.46 13.10 | 4.94 | 16.95   

XGBoost  7.32 | 2.28 | 9.93 12.56 | 3.45 | 14.99 

CatBoost  5.90 | 1.07 | 8.69   8.32 | 1.56 | 12.63 

Zero-inflated technique 

(CatbBoost regressor + 

Extra-trees classifier) 

5.74 | 1.04 | 8.56 8.30 | 1.51 | 12.53 

 

 

4 RESULTS AND DISCUSSION 

 

The algorithm was tested using data collected in 2023. Figures 5 

and 6 show the chiller plant's COP before and after optimization 

respectively in relation to the cooling load under different 

outdoor temperature conditions. Figure 5 represents the logged 

data obtained under the default chiller plant control setting, 

whereas Figure 6 illustrates the simulated COP of the chiller 

plant following optimization using the partially observable RL 

algorithm. 

 

When comparing the results with the default control setting, the 

COP of the chiller plant after optimization are consistently higher, 

with an average theoretical improvement of approximately 20%. 

It is noteworthy to highlight that as the outdoor air temperature 

increases, the enhancement in COP becomes more prominent. 

Conversely, the degree of improvement diminishes when the 

outdoor temperature is low. 

 

 
 

Figure 5. Chiller plant COP vs cooling load  

before optimization  

 

 
 

Figure 6. Chiller plant COP vs cooling load  

after optimization  

 

A Wilcoxon signed-rank test was performed to evaluate the 

statistical significance of the average improvement, yielding a 

p-value smaller than 0.0001 as depicted in Figure 8a, showing 

a high statistical significance in the observed improvement. 

This suggests the potential of the partially observable RL 

algorithm in optimizing the performance of the chiller plant, 



leading to a more efficient operation. 

 

Similar findings can be observed in terms of energy 

consumption during the chiller plant operation. The energy 

consumption of the chiller plant under the optimization 

decreases significantly by approximately 16% theoretically, with 

a p-value smaller than 0.0001 (Figure 8b) compared to the 

chiller plant under the default control setting (Figure 7). Despite 

the significant decrease in energy consumption, the cooling load 

with less than a 7.5% difference compared to the default chiller 

plant control setting. This optimization result highlights the 20% 

increase in COP, which led to a 16% reduction in energy 

consumption while maintaining the cooling capacity. This 

reduction in energy usage is essential for the sake of 

sustainability and cost-effectiveness as it leads to reduced 

electricity costs and a diminished environmental impact.  

 

 
 

Figure 7. The comparison of energy consumption vs  

cooling load before and after optimization  

 

   
 

Figure 8. The comparison of magnitude of (a) COP and  

(b) energy consumption, before and after optimization  

(**** p < 0.0001, Wilcoxon signed-rank test) 

 

5 CONCLUSIONS 

 

The aim of this study is to replace chiller plant through MiMEP 

and optimize their operation through reinforcement learning 

algorithm. Chiller plant optimization using partially observable 

reinforcement learning algorithm along with multi-objective 

Bayesian optimization was proposed due to their effectiveness 

in handling expensive black-box functions and capability in 

catering high-order optimization issues. Three machine learning 

models were developed to configure the environment, utilizing 

zero-inflated regression techniques to address issues arising 

from insufficient data, the prevalence of missing data and zero 

counts in the dataset. By interacting with the simulated 

environment, the reinforcement learning agent can constantly 

improve its control strategy to the chiller plant through iterative 

learning and optimization. The proposed algorithm 

demonstrated a theoretical reduction in the energy consumption 

by 16% and an improvement in coefficient of performance by 

20%. It showcases the potential of the algorithm in improving 

environmental sustainability and contributes towards the goal 

of carbon neutrality. Further investigation will be conducted to 

evaluate the whole year performance of the chiller plant when 

the proposed algorithm is being deployed in the real-world 

setting. 
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